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Abstract--A configuration of a plane interface between two stratified layers is appropriate for two-phase 
systems which are dominated by gravity, as is the case for large scale air-water systems under earth 
gravitation. However, for a general two-fluid system, the basic in situ configuration is stratified layers with 
a curved interface. The prescription of the characteristic interface curvature is required in order to initiate 
the solution of the flow problem and the associated transport phenomena. 

Energy considerations are employed to predict the interface configuration. The effect of the fluid 
physical properties, in situ hold up, tube dimension, wall adhesion and gravitation on the characteristic 
interface curvature are explored. The prediction of interface curvature provides the closure relation 
required for a complete solution of stratified flows with curved interfaces for a variety of two-fluid systems. 
Copyright © 1996 Elsevier Science Ltd. 
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1. INTRODUCTION 

The prescription of the free interface configuration in gas-liquid and liquid-liquid systems is of 
importance in a variety of equipment and processes. For instance, in stagnant two-fluid systems 
(storage vessels) the interface curvature determines both, the contact area between the phases and 
wettability distribution of phases with the solid wall. These significantly affect the effective 
transport phenomena involved. 

Of particular importance is the interface curvature in two-phase flow systems. In stratified flow 
pattern, particularly when the viscosity ratio is high, the interface curvature and its influence on 
wetted areas may be of crucial effect on the flow pressure drop; for example, the performance of 
crude-oil/water transportation lines (Russell & Charles 1959; Charles 1960; Charles & Redberger 
1962). 

Traditionally, the consideration of interface curvature is related to capillary and small scale 
systems, where the effect of surface tension becomes comparable with gravity. In large scale 
systems, however, the natural trend is to neglect surface phenomena. This is justified in high density 
differential systems, such as gas-liquid systems under earth conditions. In liquid-liquid systems 
with small density difference or in reduced gravity systems (even with high density difference), 
surface phenomena may dominate, resulting in a curved interface configuration (Brauner 1990). 
This curved interface may significantly affect the local and integral two-phase flwo characteristics. 

So far, stratified two-phase flows studies have assumed plane interface between the phases, which 
may be reasonable in gas-liquid (air-water) systems (Gemmell & Epstein 1962; Wallis 1969; Taitel 
& Dukler 1976; Brauner & Moalem Maron 1989; Hall & Hewitt 1993). Previous studies, focusing 
on liquid-liquid two-phase systems, point out the need to account for phases wettability properties 
and of the interface curvature in solving for the two-phase pressure-drop, insitu holdup and the 
stability of the free interface (Russell et al. 1959; Bentwich 1964, 1976; Yu & Sparrow 1969; Hasson 
et al. 1970; Brauner & Moalem Maron 1992(a), 1992(b); Barajas & Panton 1993). 

In a recent work by the authors (Brauner et al. 1996), the two-phase flow characteristics in 
stratified two-phase systems have been solved for plane and curved interfaces with the interface 
curvature as a prescribed parameter. 
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It is the objective of the present study to provide a predictive tool for determining the 
characteristic interface curvature in two phase systems. The prescription of the interface 
configuration is a basic input which is needed to further the modeling of  two-phase flow problems 
in a variety of two-fluid systems. 

2. DESCRIPTION OF PHYSICAL SYSTEM AND COORDINATES 

Consider a horizontal cylindrical conduit occupied with two immiscible fluids in a 
stable stratification as shown in figure 1. The free interface may approach a plane or lunar 
configuration depending on the physical properties of the fluids, solid-fluid wettability, the 
geometrical dimensions and the fluids holdup. The interface may be of convex or concave shape, 
thus, bipolar coordinate systems are utilized for the circular geometry under consideration. In 
figure l, ~b represents the view angle of the interface from an arbitrary point M in the flow field, 
represented by radius vectors r~, r2 (~ is counted in the same direction in both phases, from r~ to 
r2). The pipe perimeter and the interface between the fluids are isolines of  coordinate ~b, so that 
the upper section of the tube wall, which bounds the lighter phase, is represented by qS0, while the 
bottom of  the tube, which bounds the denser phase, is represented by ~b = ~b0 + n. The interface 
considered to be of cylindrical shape, is defined by ~b = ~*; it is convex for ~b* < n and concave 
for ~b* > n. In particular, q~* = n corresponds to the case of  plane interface with h / R  = 1 - cos qS0. 
The prescription of the ~b* is required for solving the hydrodynamic problem (Brauner et al. 1996). 

In general, when surface effects are significant, the interface configuration tends to attain a 
convex or concave configuration depending on the relative wettability properties of the two fluids 
with the wall surface. On the other hand, when gravity is dominant (large density difference), the 
interface approaches a plane configuration. Global energy considerations are introduced in order 
to tackle the problem of deriving the interface configuration. For the sake of clarity, energy 
considerations are demonstrated first in the well-known simple case of free interface formed 
between two-phases in a vertical tube. 

2.1. Energy considerations in vertical tube 

Referring to figure 2, the change in the potential energy, surface energy and total energy 
associated with the rise of a liquid column (from the reference level H = 0) are given by: 

AEp = - t - ( p 2  - -  pl )gnR 2 It2 
T [1] 

AE, = +_ 2nRH(a2w -- alw) [21 

AE = AEp + AEs [3] 

where alw, O'2W are the surface tension between the two phases and the solid wall. The upper and 
lower signs in [1] and [2] relate to n m >  0 and Hm < 0, respectively Hm denotes the steady liquid 
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Figure 1. Schematic description of the physical model and coordinate systems. 
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Figure 2. Vertical tube: the steady interface configuration corresponds to a minimum of the total system 
energy. 

level in the tube, see figure 2. Differentiating the total energy change in [3] with respect to the liquid 
level, H yields that a minimum AE is obtained at H = Hm 

2(a~w - a2w) 2a~2 cos 
H m  - ~ 2  - -  ; 1 ~  - -  ( p 2  - -  p~)gR [4] 

where a~2 is the surface tension between the phases and • is the wettability angle. Note that the 
Young equation is used in [4] to eliminate Aaw = azw - a2w: 

A o w  = (o ' lW - -  O'2w ) = o"12 c o s  ~ .  [5] 

Thus, for Aaw > 0, as the liquid starts climbing from its initial reference state, (H = 0), a 
reduction in the total system energy takes place for 0 < H < Bin. This is because the gain in the 
potential energy, AEp, is smaller than the corresponding loss of  surface energy (a.w > a2w as in 
air/water system, for example). 

In the opposite case where a~w < a2w (as may be the case in some oil systems), the increase of  
the surface energy is initially smaller than the decrease of  the potential energy and the minimal 
of  total energy is obtained at Hm < 0, corresponding to a physical cases where the liquid drains 
in the capillary tube below the external reservoir level. 

Note that the liquid expression obtained for the steady level of  the liquid column via minimal 
energy consideration given in [4] is identical to that obtained by simple force balance, whereby: 

O"12 COS AP = (p2 - -  p z ) g H m  = 2 ~ o~. [6] 

2.2. Energy considerations in a horizontal conduit 

The priniciple of  predicting the interface location and shape via minimal energy consideration 
is now applied to the more complicated configuration of  a two-phase system in a horizontal 
cylindrical conduit. 
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The general relationship for the total energy variation for a unit length of a horizontal tube is 
given by: 

b2A _1 ---=-- = A(E.  + E,).  [71 
L L 

The variations of the potential and surface energy terms are calculated with respect to a plane 
interface (taken as a configuration of reference). 

The total change in the potential energy term for the two phases is: 

1 1 
AEp = -i- g(A,p, + A2p2)(YG~ - YG~2) L 1_, 

[81 

where the center of gravity of the two phases with plane interface, YG~z, and with curved interface, 
YG~, are derived in appendix A in terms of ~0, ~b* and insitu holdup ratio, a = A,/A2. 

The total change of  the surface energy terms for the two phases is given by: 

AE~ = (AEs),w + (AEJ2w + (AEs)12 = o-lwAS,w + o-2wAS2w + O",2AS,2. [91 

Equation [9] represents the change in surface energies involved due to variation of the contact 
areas of each phase with the solid wall, AS~w, AS2w and between themselves, AS,2 as the interface 
switches to its natural curved configuration (from the reference plane configuration). In view of 
figure A1 (appendix A), the changes in the various contact areas (per unit tube length) are: 

ASzw = 2R(~bo- q~o e) [10.1] 
L 

AS,w= -AS2w [10.2] 

ASn = 2RIsin c~°(rt-- ck*) ] L sin qb* sin qSo p [10.3] 

where ¢o v denotes the corresponding ¢0 for plane interface. 
The surface tension coefficients of the two phases with the solid wall, o",w, a2w, are eliminated 

employing Young formula [5]. Substituting [5] and [10] into [9] yields: 

(z - ¢*) ] 
AE, 2Ro"n sin ¢0 -sin ~b0 P + cos ct(¢0 P - 00) jill 

Utilizing [8], [11] for the changes in the potential and surface energies, the total change in the system 
energy [6] reads: 

fF  sin 3 ¢o " " "  ~b* 4)* sin(2~b*)/2) AE _ 1 ( a e o  + A E , )  = W 0 2 g ( 1  - o ~ / ~  (ctg - ctg q~o)(rt - + 
L L 

+} sin~ ¢~'] +ev[sin q~° rc - ~b* } sin ~b* - sin q~ + cos a(~b~ - ~o)] [12] 

where, fi = p,/p2 and ev is the Eotv6s number defined by; 

20"12 
ev -- (pz -- p,)gR 2" [13] 

The steady interface configuration corresponds to the minimum of the total system energy, AE/L.  
The search for the minimal point of [12] as function of the various physical parameters is discussed 
in section 3. 
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3. R E S U L T S  A N D  D I S C U S S I O N  

Before discussing the minimum of  [12], it is of  interest to analyse separately the variations of  
the potential and surface energy with the interface curvature. First, the change in the potential 
energy of  the two phases for curved interface, ~b* :# re, with reference to plane interface (~b* = r 0 
is shown in figure 3. 

The construction of  figure 3 is based on [8] with [AI0] for YG~2 and [A10]* for YG* while utilizing 
the relationship between t#0, ~b* and ALIA2 as given in [A7] and [A7]*. Note that ~* < n and q~* > rt 
represent convex or concave interfaces, respectively. In view of  figure 3, any deviation from plane 
interface results in elevation of  the position of the two-phases center of  the gravity. Thus, in the 
absence of  surface effects, the minimum of  the potential energy also represents a minimum of  the 
total system energy, which is at ~b*= ~. Hence, in two-phase systems which are absolutely 
dominated by gravity, a configuration of  plane interface is predicted via energy considerations. 

The variation of  the surface energy with q~*, as given in [11], is demonstrated in figure 4 for the 
case of  • = x/2, corresponding to identical wettability of  the two phases with the solid wall, see 
[5]. For  the case under consideration, the "gain and loss" of  the wall energy due to variation of  
the wall/fluids contact area are equal, and the net change of  the total surface energy is merely due 
to the variation of  the interfacial energy between the phases. For  the particular case of  AI/A2 = 1, 
the interfacial area (hence the surface energy as well) is minimal for plane interface, ~b*= x. 
However, for At~A2 v~ 1, the interfacial area between the phases increases as the phase of  the lower 
holdup spreads over the wall in a lunar shape, while it decreases when the lower holdup phase 
shrinks into a convex ("drop")  shape. Thus for A~/A2 > 1, (figure 4(a)), a reduction of  the 
interfacial area takes place as ~b* decreases below ~b* = n, and the minimal interfacial energy is 
obtained at ~b*< re, corresponding to convex interface. On the other hand, for A~/A2 < 1 
(figure 4(b)), the minimum point is at ~b* > n with concave interface. The value of  ~b* at the 
minimum of surface energy varies with the phases holdup ratio, A~/A2. In the extreme of A I/A2~ oo, 
the optimal curvature is ~b*---,0 while for A~/A2--,.O, c#*~2~. 

Figure 5 represents the total surface energy for another particular case of  ideal wettability of  
the lower phase (~ = 0), for which case [5] becomes crlw - a2w = try2. For  this case, the reduction 
of  the wall energy, as the lower wetting phase climbs along the wall, is always larger than the 
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Figure 3. The change in the potential energy associated with variation of  the interface curvature. 
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Figure 4. The change in the surface energy associated with variation of the interface curvature, ~ = r~/2. 

associated increase of  the interfacial energy. Therefore, the minimal total surface energy is obtained 
at q~* -- 2z~. Note that the reduction of the total surface energy with increasing 4~* becomes more 
pronounced as A~/A2 decreases. This reflects the fact that for AI / A2  < 1 and ~ = 0 a concave 
interface is associated with reduction of both the wall and the interfacial energies (see figure 4). 

Complimentary description of the effects of  the wettability angle ~ is shown in figure 6, for 
A , / A 2  = 1. Again, for ~ = rt/2 and equal phases insitu holdup, the minimal surface energy is at 

* = n (plane interface), while for ideal wettability of  one of the phases, the minimal surface energy 
is at either 4 "  = 2re for ct = 0, or ~b* = 0 for ct = ft. In general, when the wettability of  the wall 
is more preferable by the lower phase, 0 < ~ < rt/2, the minimum of  the total surface energy is 
obtained at 7t < th* < 2~ (concave interface), while for ~/2 < ~ < n, 0 < q~* < n (convex interface). 
Obviously, the symmetry in figure 5 is typical of  A~/A2 = 1 only. 

Figure 7 represents typical plots of  the total energy (potential and surface energies) as a function 
of the surface curvature, qS*, for a given set of  the problem parameters, namely: the wettability 
angle ~, Eotv6s number ~v and the phases holdup ratio, A~/A2.  Note that, given a value of At~A2,  
q~0 P in [12] is determined by [A7] while the value of q~0 is obtained from [A7]* for each specified 
value of ~b*. With reference to figure 3 (which represents the changes of  the system potential 
energy), the inclusion of the surface energy results in a shift of  the location 4~* to q~* for which 
the system total energy is at its minimum. This value of q~* represents the ultimate interface 
curvature at which the phases will stabilize. Thus, q~* stands for the predicted steady state interface 
curvature. 

For the particular case of  ~ = 0 (ideal wettability of  the lower phase), q~* is shifted towards values 
higher than ~b* = 180 °, corresponding to a concave interface configuration. This shift increases as 
the holdup ratio, ALIA2,  decreases or the Eotv6s number increases (see also figure 8). For relatively 
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Figure 5. The change in the surface energy associated with variation of the interface curvature for ideal 
wettability of the lower phase, e = 0. 

low Eotv6s numbers (ev = 10-3), the curves obained for the total energy are almost identical to 
those obtained for the potential energy, and the location of  ~b* is close to ~b* = n (plane interface). 
Obviously for large Eotv6s numbers, the total energy curve approaches that of  the surface energy. 

Figures 8-10 represent a complimentary parametric study on the (optimal) steady interface 
curvature. In general, for low Eotv6s numbers (weak surface energies), the effects of  the wettability 
angle and holdup ratio are moderate. Obviously, for Ev = 0 (the total system energy is identical 
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Figure 6. The effect of the phases wettability on the changes of the surface energy associated with 
variation of the interface curvature. 
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to the system potential energy) the interface is plane (~b* = :~) independent of the phases holdup 
and wettability angle. However for a finite low Eotv6s number and a low holdup ratio (large 
amounts of lower wetting phase), the steady interface curvature still deviates from plane 
configuration (~b* ~- r 0 and tends to stabilize in a concave configuration. For instance, air-water 
systems (which are dominated by gravity) indeed demonstrate a curved liquid interface at 
sufficiently low gas holdup (gas bubble floating at the upper portion of the pipe). As the Eotv6s 
number increases, dramatic effects of both ~t and the phases holdup on the interface curvature are 
expected in view of figures 8(c), (d), 9 and 10. 
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It is of  interest to note that by varying the wettability, the interface configuration may switch 
from a concave to a convex configuration. This is well demonstrated at relatively high Eotv6s 
numbers as in figure 8(c), (d). For  ideal wettability of  the lower phase (~ = 0), qS* >~ 180 ° always, 
thus concave interface is obtained irrespective of  the lower phase holdup. In the other particular 
case of  equal wettability, ~ = n/2, the interface attains in general a convex configuration for high 
holdup of  the upper phase, and concave configuration for the low holdup range. Hence, at a certain 
holdup or certain angle of  wettability, the interface may demonstrate convex configuration although 
the lower phase is of  the higher wettability (~ < 1r/2). 

For  sufficiently high Eotv6s numbers, Ev >> 1, the variation of interface configuration with the 
insitu holdup approaches a uniform curve (independent of  the Eotv6s value, figure 10). At this 
range of  high Eotv6s numbers, the wettability determines the location of the uniform curve of  qS* 
as a function of  At/Az. 

In systems which are dominated by surface effects, Ev~oo, the steady interface curvature is 
determined by the wettability angle and ~b0, following simple linear relationship: 

qS* = (180 -- ~) + ~b0. [14] 
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The approach of q~* towards this limit for Ev >> 1 is demonstrated in figure 11, obtained for Ev = 5. 
Thus, in surface tension dominated systems, given the phases wettability angle, the interface 
configuration (~b0 and ~b*) for a certain phases holdup can be easily obained by the intersection 
point of the straight line [14] with the corresponding holdup curve in figure A2. It is worth noting 
that for Ev--*oo, and c~ = 0 (ideal wettability of the lower phase), qSm by [14] coincides with the 
geometrical upper bound of the solution domain, (q~* = q~0 + z, dashed line in figure A2). In this 
case, the solution obtained for the interface configuration is q~0 = 180 ° and ¢* = 360 °, irrespective 
of the system holdup. This solution corresponds to a floating bubble of the upper phase. For the 
other extreme of Ev--* oo and ~ = 180 ° (ideal wettability of the lower phase), q~* = q~0, and in view 
of figure A2, the system configuration is that of a fully eccentric bubble of the lower phase touching 
the tube bottom. This solution is again independent of the phases holdup. However, for 
0 < ~ < 180 °, when neither of the phases ideally wets the tube wall, the solution for the interface 
configuration (as obtained from [14] and figure A2) varies with the phases holdup. Thus, even when 
gravitation is completely absent, partial stratification may take place in the system due to the 
relative importance of wall energy compared to phases interfacial energy. The interplay between 
these surface energies in detemining the interface configuration is well understood in view of the 
discussion that refers to figures 4-6. 

36C 

30C 

240 

180 

120 

60 

• E 300 "6- 

240 
- i  

o 
180 

u 120 

60  

u~ 300 

24C 

180 

120 

60  

~ "  ; I0 
I 

o ' ~ ~ ~  
° ,  

• 0 2 - -  • 

a) Q =0 ° 

. . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . . . .  

, Y ~ o .  

b) a -- 30 ° 
m , ,  

. . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . .  

C) a=90 ° 

0 . . . . . . . .  I . . . . . . . .  I . . . . . . . .  l . . . . . . .  

0.01 0. I  I I0 I00 

Phases Holdup Ro.tio, AI/A z 
Figure 10. The effect of the phases in situ holdup on the steady interface configuration. 



STRATIFIED TWO-PHASE SYSTEMS 1177 

. E  
-O- 
.¢ 

I 
O 

i 
e= 

i 

0 

300 

240 

180 

120 

60 

00 

f) Ev-5 

S 
, S  

I I I 
20 4o 60 80 I00 120 i40 t60 180 

Phases Distdbution Angle, ~0 
Figure 11. Interface monogram: effect of  wall/phases wettability, Ev > 1. 

It is to be noted that figures 8-10 summarize the results obtained for the interface configuration 
as a function of the Eotvfs number, Ev, and the phases holdup ratio for the cases where the lower 
phase is the one of preferable wettability, 0 ~< • ~< 7r/2. The steady interface configuration for the 
cases where the upper phase is the wetting one, re/2 ~< ~ ~< re, can be easily obtained from these 
figures in view of the symmetrical properties of the solutions for 4b* in the corresponding systems, 
shown schematically in figure 12. 

Given two systems, A and B with the identical Ev number, the interface curvature for system B 
with o~ > 90 ° can be predicted from information obtained for system A with 0 ~ ~ ~< 90, following 
the rule: 

When (Ev)B = (Ev)A 

and (ct)B = 7t - (Ct)A. [15.1] 

Then for (q$o), = 7r - (4)0)A the interface curvature of system B is given by: 

(~b*). = 2~ - (~m*)A- [15.2] 

(A) ~ 

UMF 22/6--F 

(EOA=(808 
.~| (A~-p)A=(aEp)B _ (¢om)^=m-(Oom), 

(A1/A2)A=(A1/A2)I~-==~ : : :z~._, .  2~ . . . .  
| (AIEs)A=(&Es)B [(P m)A = -t(P m)a 

(~)A=(rc-O0B J 
Figure 12. Symmetrical two-phase systems. 
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Figure 13. Construction of the system "operational monogram" from the corresponding "interface 
monogram" and "flow monogram". 

The corresponding phases in situ holdup in systems A, B are also related whereby 
(A,/A2)B = (A~/A2)7,'. 

For comparison, the case of two immisicible fluids contained in a spherical vessel is treated in 
appendix B, The analytical derivation of corresponding expressions for the changes in the potential 
energy, surface energy and total energy associated with variations of  the interface configuration 
in spherical geometry are derived and the analogue of [12] is [B9]. The variation of the interface 
configuration in spherical coordinates follows the same trends as those obtained in cylindrical 
coordinates when the two geometries are compared at identical phases holdup, Eotv6s number and 
wettability angle. 

4. APPLICATION TO THE FLOW PROBLEM 

The characteristics of the interface configuration as shown in figures 8-10 are used to construct 
the so-called in ter face m o n o g r a m ,  which is aimed at predicting the steady optimal interface 
curvature as a function of phases distribution angle q~0 given the phases wettability angle and the 
system Eotv6s number. An example of such an interface m o n o g r a m ,  is demonstrated in figure 11 
and by the bold line in figure 13. The interface monogram presented in the form of 4)* as a function 
of 4)0 can be conveniently combined with the hydrodynamic problem, where the in situ holdup is 
determined by the solution of the flow field. 

The problem of  stratified laminer flow of  two phases with a plane or a curved interface has 
recently been solved by the authors (Brauner et al. 1996). The solution for the velocity field of the 
two-phases V,, I/2 is obtained in bipolar coordinate system ((q~, ~), ~ = ln(rdr2),  see figure 1), in 
terms of Fourier integrals: 

f0 1 ' " (t:o~u ~, f sin(#)_c_~_~-- ~b0) sin(~b* - qS0) Hjv(co)cos(co~) do9 [16.1] V--L~ = I?] = 2 sm q)0~-__-z-7 + 2(1 - fi) 
VR sin(4~*) 

} V2 P, 2 " ""  ~ sin(q~ - ~bo) sin(q~* - 4)0) H2v(co)cos(to~) dco [16.21 
VR --  - ----- s i n  pq)0~CO~-  ~ - Z  C-~ q~ + 2(1 -- ~) sin(~b*) 
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sinh[co(~b* - n)] sinh[og(q~ - ~bo)] 

H2~(w) = sinh[o~(~b* - n)] sinh[og(tb - n - tpo)] 
~b(co)sinh(no~) cosh[w(q~* - n - ~bo)] 

~,(to) = tanh[og(tb* - ~bo)] + fi tanh[to(n + ~b0 - q~*)] 

R ap 
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[17.1] 

[17.2] 

[17.3] 

[17.4] 

The phases flow rates are obtained by integrating the phases velocities obtained from [16] over 
the corresponding flow areas A~, A2. For a given pressure drop and viscosity ratio, this yields 
Q~(~b*, ~b0) and Q2(~b*, ~b0). The ratio of  the two fluids flow rates, is independent of  the system 
pressure drop and is a function of  ~b0, ~b* only. Thus, 

Q2 - Q(~bo, ~b*, fi) [18] 

and 

~z dp (dp~'~ 8Qt#~ [19] 

The solution of  equation [18] can be represented byflow monogram curves as in figure 13. In view 
of the "flow monogram" curves in figure 13, knowing the fluids' flow rates ratio and given the 
interface curvature ~b*, the phases distribution angle ~b0 can be extracted which together with ~b* 
determined the in situ holdup via [A7] or [A7]*. Thus, each point along the Q~/Q2 curve represents 
a possible combination of  (q~*, ~b0), corresponding to a certain interface curvature and in situ 
holdup combination. The associated pressure drop is obtained by [19]. 

The "interface monogram" (as evolves from energy considerations), together with the "flow 
monogram" (as obtained independently from the hydrodynamic model), constitute the system 
"operational monogram" for a particular set of  (fi, ct, Ev) as demonstrated in figure 13. The 
intersection between the "interface" and "flow" monograms represents all stratified flows solutions 
with curved interfaces obtained for varying Q~/Q2 ratios. Figure 13 indicates that for a given 
physical system (~, at, Ev) and operational condition Q~/Q:, there exists a single solution (~b*, ~b0) 
which determines the resulting flow characteristics (0 points). 

Thus, basically, the input for a stratified flow problem includes the tube geometry, gravitation, 
flow rates and all the physical properties of  the two fluids: viscosities, densities, surface tension and 
the wall phases wettability angle. Note that the case demonstrated in figure 13 corresponds to a 
typical oil-water system with Ap = 0.1 gr/cm3; D = 1" and a = 40 dyne/cm, for which E~ -~ 0.5. But 
systems of  lower density differential (higher Ev) are common in liquid-liquid systems or vapor-liquid 
systems operating near the critical point. In comparison, the corresponding solution obtained for 
plane interface (n, q~0 P) is included in figure 13 (denoted by x points). As is shown for ~t = 0, the 
discrepancy between (~b*, ~b0) and (n, ~b0 P) is fairly significant for high QI/Q2 ratios and becomes 
more and more dramatic for lower Q~/Q2 ratios. Another noteworthy point demonstrated in 
figure 13 is that for a given physical system, a wide range of  interfacial curvatures may result with 
varying the phases input flow rates ratio. 

The basic output of  an "operational monogram" is the interface configuration corresponding 
to a particular two-phase system and flow rates ratio associated with this monogram. With the 
extraction of  q~* from the operational monogram, all other two-phase flow characteristics are 
obtained via the hydrodynamic model (Brauner et al. 1996). These include the velocity profiles, 
interfacial and wall shear stresses distribution and pressure drop. Thus, the prediction of  the 
interface curvature, q~*, becomes an integral part of the complete stratified flow solution. 
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5. CONCLUSION 

The prescription of the characteristic interface curvature is required in order to initiate the 
solution of stratified flow with a curved interface formed between the phases. 

Energy considerations are employed in order to predict the interface configuration. The changes 
in the system potential energy and surface energies associated with the curving process of the 
interface are explored. The steady interfacial curvature is shown to correspond to the interface 
configuration for which the total system energy is at its minimum. Based on this principle, the 
characteristic interface curvature is predicted as a function of the fluids physical properties, in situ 
holdup, wall/phases wettability angle, tube dimensions and gravity conditions. This provides the 
"interface monogram" for a particular two-phase system. 

The "interface monogram" constitute the closure relation required for obtaining a complete 
solution of the problem of stratified flow with a curved interface. A convenient frame for obtaining 
the solution is via the construction of the system "operational monogram", which combines the 
system "interface monogram" with the system "flow monogram". The latter is obtained from the 
solution of the hydrodynamic equations for an arbitrary interfacial curvature. 

Apparently, the solution of laminar-laminar two-phase flow is determined in terms of two 
parameters: the phase flow rates ratio and the phases viscosity ratio and is independent of the 
density differential, surface tension effects, tube dimension or gravitation. This is indeed the case 
when the flow configuration is restricted to a plane interface between the phases. When this 
constraint is relaxed, the solution of laminar two-phase flows is shown to be dependent on all of 
these, and is determined by four nondimensional parameters: phases viscosity ratio, flow rates ratio, 
wall/phases wettability angle and the Eotv6s number. The latter represents the ratio between 
surface tension and gravity forces. 
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A P P E N D I X  A 

Geometrical Relationships for Cylindrical System 

Consider two-fluid interface (P~DP2) as in figure A1. The curved interface is defined by ? centered 
at ol. In terms of the angles ~b* and q~0, the phases cross-sectional areas are given by: 

A2= R2{[~bo-½ sin(2q~0)] 

A2 = R2[~o - ½ sin(2~bo)]; 

sin 2 ~b* [q~* - rr - ½ sin(2~b*) ; 

~ * = 117 

AI = IrR 2 - Az. 

4,* -'# rc 

[All 

[A2] 

Note that for specified holdup of the two phases, At~A2 = a, [A1] and [A2] yield a relation between 
a, ~b0 and q~*. The center of gravity of the lower phase is given by: 

YG2 = ~ Y dA. [A31 
2 

The center of gravity of the two phases is given by: 

YG12 - plA1 YGI + p2Az YG2 [A4] 
plAl + p2A2 

Utilizing the fact that for equal densities, p~ = p2, the center of gravity is at the tube center, 
YGt2 = 0, [A4] yields: 

YG, = _ 1  YG2. [A51 a 

ol 

P P2 
Figure A1. System geometry in polar coordinates. 
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geometrical considerations. 

Clearly, the individual centers of  gravity,  YG~ and YG2 are independent  on the phases densities. 
Therefore ,  for  pl ~ p2, [A5] with [A4] yield: 

] - - / ~  . 
YG,2 = YG2 a~ + 1' ~ = p~/p2. [A61 

For plane stratified interface, 4)* = 

A, ~ - 4~o P + ½ sin(Zq~o P) 
A2 - a - qSop _ ½ sin(2~bop) [A7] 

sin'4~g 
YG[ = --~R [4~o p _ ½ sin(2q~o P] [A8] 

where ~bo P is the corresponding q~o for  plane interface. In terms of  the area ratio (specified holdup)  
[A8] reads: 

2R YG p = -~-~ (a + 1)sin 3 ~b P. 

Substi tut ing YG~ f rom [A9] into [A6] yields: 

2R (1 - d) YG~[2 = - -y~  (a + 1)sin 3 q~o P ~ q - ' T ) "  

[A91 

[AlO] 

For curved interface, 4)* ~ 

The cor responding  expressions are: 

[ sin ~bo "~2r $ ,  
Zr -- 4)O + ½ sin(2~bo) -- Lsi--~-~) tn -- + ½ sin(2~b*)] 

AI 
a = A--~ = [A7]* 

( s i n  qS0'~2r _ q~, + ½sin(2~b*)] *o - ½ sin(2,o) + \ ~ , ]  ,n 

R sin 3 ~0 . . 
YG2* = ~ (a + 1) ~ tctg qS* - ctg q%)[n - q~* + ½ sin(2q5*)l [A9]* 

sin 3 ~b0 . . ~b* , 1 - ~ [A10]* YG* = Rn (a + 1) ~ tctg - ctg qS0)[rt -- q5 + ½ sin(2~b*)] a~ + 1" 

I t  can be shown that  for q~*~rc, [A7]*, [A9]* and [A10]* converge to [A7], [A9] and [A10]. 
It  is o f  interest to demons t ra te  graphically the relat ionship between the interface curvature,  ~b*, 

and the distr ibution o f  the two phases contac t  area with the tube wall (as determined by ~0) for 
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constant values of  insitu holdup ratio, a = A,/A2. Figure A2 represents the envelope of  solutions 
obtained by [A7] and [A7]* for a wide range of  in situ holdup ratios. Clearly, given the phases 
holdup, as ~b* increases, the tube surface wetted by the lower phase increases (~b0 increases). 

It is worth noting that solutions for q~*(~b0) are bounded in the range of  ~b0 ~< 4~* ~< ~b0 + lr (see 
figure 1). Thus, for ~bo-*0, the maximal interface curvature is bounded by n while for ~bo---,rr, the 
minimal curvature is n and its maximal value is 2n. These geometrical bounds are illustrated by 
the dashed lines in figure A2, which define the envelope for the curves. The dependence of  q~0 and 
~b* (for a given A,/A2) is utilized in the calculations of the potential and surface energies variation 
associated with varying the interface curvature. 

A P P E N D I X  B 

Spherical Vessel 
Two immiscible fluids contained in a spherical vessel are considered (see figure A 1). The volumes 

occupied by the two fluids are given by: 

- ~ I  /'sin ~o'~,9 ~ ,  ] ~ ,  V, = 2 + 3 cos ~b0 - cos 3 ~b0 + ksin ~ , / , -  - 3 cos + cos 3 ~b*) ; =/= rt 

75R3._ 
v, = - T I e  + 3 cos ~o -- cos 3 q~0]; ~b* = rr 

4rrR3 Vi. [B1] I I2-  3 

Hence, for a specified phases holdup ratio, a = V,/V2, the following relationship for ~bo = ~bo(a, ~b*) 
is obtained: 

/'sin ~b0"~3(9 ~b* 4 
2 - 3 cos q~o + cos 3 ~bo - ~ sin~b*] "- - 3 cos + cos 3 ~b*) = a + 1 ; 4,* =~ It 

4 
2 - 3 c o s q ~ 0  P + c o s  3to0 P = a +  1; ~b*=rr. [B2] 

The center of  gravity of  the two phases is given by: 

(a) For plane interface, q~* = it: 

rGr2 = 

(b) For curved interface, q~* ~ re: 

3R sin 4 ~b0 P (a + 1)(~ - 1) 
16 a ~ +  1 

[B31 

R sin ~o(Ctg ~b*-ctg ~'x (~ - 1)(a + 1)( 1 "~ YG~ = ,voj (a~ + 1) k½ - ¼ cos ~bo + ¼ cos 3 ~bo - a +-----T]" [B41 

The change in the potential energy associated with changing the system configuration--from that 
of  a plane interface to a curved one--is  given by: 

AEp =p2~-~--g(~-l){sin ~o(ctg~b*-ctg ~bo)[½-¼cos~bo+¼COS 3 ~bo- a--~l  ] 3siXth°P}. [B5] 

The associated change in the total surface energies is defined by: 

AE~ = alwASlw + O'2wAS2w + ¢rI2AS12 [B6] 
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where: 

AS,w = 2~R2(cos q~o - cos 4)0 o) 

ASI2 = ztR2( sin2 q~° 2(ctg ~b* - ctg ~ ° ) s i n  -~*- - sin2 ~b°P ) 

ASzw = - A S I w .  [B7] 

Substi tut ing [B7] and  Young ' s  equat ion [5] into [B6] yields: 

AE~ = 2zcR2a'2 [ sin2 ga°(ctg ~p* - ctg ck°) ~ " 2 P ] ~ n ~ -  ~ - ~ sm q~o + cos 0~(cos q~o P - cos 4)0) . [B8] 

Combin ing  [B5] and [B8] yields the following expression for  the total  change in the system energy: 

AE -- (AEp + A E s ) / R 4 p . , g ( ~  - 1) 

* E  
"9- 
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d 

c 

o 
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Figure B1. Steady interface configuration: comparison between cylindrical and spherical vessels. 
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Figure  B2. C o m p a r i s o n  between the interface curva ture  in cylindrical and  spherical  vessels, Ev >> 1. 

2 [ ~b* = 7t ~ sin ~b0(ctg - ctg ~b0)(½ - ¼ cos ~b0 + ¼ cos 3 ~b0 
1 )3sin44~oV] 

a + l  16 

]} ~-n--q9 ~ - -  ~ s i n  qgo + COS ~X(COS q ~  - -  COS ~bo) [B9] 

where Ev is the Eotv6s number defined in [13]. 
Equations [B 1]-[B9] can be utilized to produce the analogue curves for all the system variables 

(AEs, AEp, AE) leading to the prediction of  the optimal steady interface curvature, ~b*, in spherical 
geometry. As the analytical treatment in appendices A and B indicate, the nondimensional 
parameters representing cylindrical and spherical geometries are identical. These are ~, Ev and the 
in situ volume ratio of  the phases, VI/V2. Note that for the cylindrical case VI/V2 = (AIL)/  
(A2L) ~- A,/A2. 

A summarizing comparison for the optimal steady interface configuration in cylindrical and 
spherical containers is given in figures B1 and B2. The comparison in figures B1 and B2 is based 
on identical phases volume ratio in the two geometries. Clearly, for the same two-fluid system, equal 
Eotv6s numbers mean equal containers diameters. 

As figures B1 and B2 point out, the general trend of  the variation of  the interface curvature with 
the system parameters is similar in both geometries. Moreover, the quantitative gap between the 
two is reduced as the E6tvos number increases or as the in situ volumetric ratio of  the less wetting 
phase increases. For 0 < ~ ~ 90 °, only at the extreme of low in situ ratio, VI/Vz < 0.1, a cylindrical 
container demonstrates consistently higher interface curvature. 


